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ABSTRACT 

 

 

Weeds are very annoying for farmers and also not very good for the crops. Weeds 

are competitive, fighting agriculture crops or lawn grass for water, light, nutrients and 

space. Most are quick growers and will take over many of the areas in which you find them 

Its existence might damage the growth of the crops. Therefore, weed control is very 

important for farmers. Farmers need to ensure their agricultural fields are free from weeds 

for at least once a week, whether they need to spray weeds herbicides to their plantation or 

remove it using tools or manually. The aim of this project is to build an application that can 

identify the weeds in a given video. An automated image classification application has been 

designed to differentiate between weeds and crops. For the image classification method, we 

employ the convolutional neural network algorithm to process the image of the object.For 

the weed detection algorithm, the convolutional neural network is suitable for this project 

because CNN are most applied to analyzing visual image. CNN use variation of multilayer 

perceptron’s designed to use minimal preprocessing. 

We will be implementing a web-based application where the user will upload the 

video of the crops and the system will detect the weeds in the given video. This can also 

made into an attachment to robots where it can dig out the weeds for us. But our primary 

objective is to make a system that can detect the weeds. 
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1. INTRODUCTION 

 
 

1.1 PROJECT SCOPE 

Weed plants can be seen more in a plantation because the plantation have all 

nutrition and water for the weeds to grow. This is a very big problem to the farmer because 

the weeds consume a large amount of nutrition and water and the other plants cannot grow 

in a good shape. Therefore, weed detection system is important in agriculture. This study 

presents a method for detecting weeds in crops using convolutional neural networks. 

 
 
 

1.2 PROJECT PURPOSE 

The purpose of this study is to effectively detect the weeds in crops using 

convolution neural networks. As the weed plant consumes a large amount of nutrition and 

water, the other crop plants cannot grow in a good shape. Weeds compete with crops for 

water, light, nutrients, and space, therefore it is very important to design a system that can 

detect the weeds in the crops. Our primary objective is to provide a system that can detect 

weeds. 

 
 

1.3 PROJECT FEATURES 

The main feature of the system is to propose a general and effective approach to 

detect the weeds in the crop. An automated image classification system has been designed 

to differentiate between weeds and crops. For the weed detection algorithm, the 

convolutional neural network is suitable because CNN are most applied for analyzing 

visual image. The user will upload the video containing the crop field in the application 

and the system gives the output video containing identified weeds in the given video. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. SYSTEM ANALYSIS 
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2.SYSTEM ANALYSIS 

 
 

SYSTEM ANALYSIS: 

System Analysis is an important phase in the system development process. The 

system is studied to the minute details and analyzed. The system analyst plays an important 

role as an interrogator and dwells deep into the working of the present system. In analysis, a 

detailed study of these operations performed by the system and their relationships within 

and outside the system is done. A key question considered here is, “what must be done to 

solve the problem?” The system is viewed as a whole and the inputs to the system are 

identified. Once analysis is completed the analyst has a firm understanding of what is to be 

done. 

 
 
 

2.1 PROBLEM DEFINITION 

 
Building This project is primarily concerned with detecting the weeds in the crops. 

The suggested approach attempts to use convolution neural network to obtain the optimal 

function in the most effective manner. 

• The main objective is to detect weeds in the crops. 
 

• To create a system which uses the given dataset to train and later can 

detect the weeds in new data given. 

 
 

 
2.2 EXISTING SYSTEM 

Existing Systems are available which are based on manual weed detection, in 

contrast with the weed detection using machine learning, which has been traditional way 

of visual inspection. There are also systems where weeds are identified in the pictures 

uploaded by the user. But uploading a lot of pictures is tedious. 
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2.2.1 LIMITATIONS OF EXISTING SYSTEM 

 
● Entering the large number of pictures to the system is a tedious work 

● Clicking many pictures and uploading them can be tedious 

● It is very time consuming. 
 
 
 

2.3 PROPOSED SYSTEM 

We will be building a system that uses deep learning techniques to identify weeds. 

The main feature of the system is to propose a general and effective approach to detect the 

weeds in the crop. An automated image classification system has been designed to 

differentiate between weeds and crops. For the weeds detection algorithm, the 

convolutional neural network is suitable because CNN are most commonly applied to 

analyzing visual image. The User will provide the video of his crop plants including weed 

crops as an input. Our system will detect the weeds in the input and gives the output video 

containing identified weeds in the given crop video. One of the important steps in 

increasing the yield is to treat the weeds as it is directly associated with crop yield. We will 

be using advanced algorithms like Mask R-CNN built on ResNet-101 and FPN for our 

system and we will also compare with other older algorithms to prove higher accuracy of 

our system. 

 
 

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 

The system is very simple to design and implement. The system requires GTX 970 

graphics card and the system will work in almost all configurations. It has the following 

features :- 

 

● Better services 
 

● Ensure data accuracies. 
 

● Greater efficiency 
 

● Minimum time needed for the various processing 
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2.4 FEASIBILITY STUDY 

 
The feasibility of the project is analyzed in this phase and business proposal is put 

forth with a very general plan for the project with some cost estimates. During system 

analysis the feasibility study of the proposed system is to be carried out. This is to ensure 

that the proposed system is not a burden to the company. Three key considerations involved 

in the feasibility analysis are 

● Economical feasibility 
 

● Technical feasibility 
 

● Social feasibility 
 
 
 
 

2.4.1 ECONOMIC FEASIBILITY 

The developing system must be justified by cost and benefit. Criteria to ensure that 

effort is concentrated on a project, which will give the best return at the earliest. One of the 

factors, which affect the development of a new system, is the cost it would require. The 

following are some of the important financial questions asked during preliminary 

investigation: 

 
 

● They conduct a full system investigation. 
 

● The cost of the hardware and software. 
 

● The benefits in the form of reduced costs or fewer costly errors. 
 
 

Since the system is developed as part of the project work, there is no manual cost 

to spend for the proposed system. Also, all the resources are already available, which 

indicates that the system is economically possible for the development. 
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2.4.2 TECHNICAL FEASIBILITY 

This study is carried out to check the technical feasibility, that is, the technical 

requirements of the system. Any system developed must not have a high demand on the 

available technical resources. The developed system must have a modest requirement, as 

only minimal or null changes are required for implementing this system. 

 
 
 

2.4.3 BEHAVIORAL FEASIBILITY 

This includes the following questions: 
 

● Is there sufficient support for the users? 
 

● Will the proposed system cause harm? 
 

The project would be beneficial because it satisfies the objectives of detecting the 

weeds from the data given by the user. All behavioral aspects are considered carefully and 

conclude that the project is behaviorally feasible. 
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2.5 HARDWARE AND SOFTWARE REQUIREMENTS 

 

2.5.1 HARDWARE REQUIREMENTS 

Hardware interfaces specify the logical characteristics of each interface between 

the software product and the hardware components of the system. The following are some 

hardware requirements. 

 
● Graphic Card : NVIDIA GeForce MX350 

 
● Processor : 11th Gen Intel(R) Core(TM) i5-1135G7 

 
● RAM : Min 4GB or Above 

 
● Hard disk : Min 100 GB 

 
 
 

 
2.5.2 SOFTWARE REQUIREMENTS 

Software Requirements specify the logical characteristics of each interface and 

software components of the system. The following are some software requirements: 

● Operating System : Windows 10 
 

● Technology : Python 3.6 
 

● IDE : Google colabs 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           3.ARCHITECTURE 
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3. ARCHITECTURE 

 
 

3.1 PROJECT ARCHITECTURE 

 
This project architecture shows the procedure followed to detect the weeds in the 

crop using convolution neural network. 

 
 
 

Figure 3.1 : Project architecture of Identification of weeds from Crops 
 
 
 
 

3.2 MODULE DESCRIPTION 

In the proposed work we used Mask R-CNN built on FPN(Feature Pyramid 

Networks) and ResNet101. Feature Pyramid Network (FPN) is a feature extractor designed 

for accuracy and speed. It generates multiple feature map layers (multi-scale feature maps) 

with better quality information than the regular feature pyramid for object detection. 

ResNet-101 is a convolutional neural network that is 101 layers deep. The network can 

learn rich feature representations for a wide range of images. 
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The key element of Mask R-CNN is the pixel-to-pixel alignment, which is the main 

missing piece of Fast/Faster R-CNN. Mask R-CNN adopts the same two-stage 

procedure with an identical first stage (which is RPN). In the second stage, in parallel 

to predicting the class and box offset, Mask R-CNN also outputs a binary mask for 

each RoI. This is in contrast to most recent systems, where classification depends on 

mask predictions. 

Furthermore, Mask R-CNN is simple to implement and train given the Faster R-CNN 

framework, which facilitates a wide range of flexible architecture designs. 

Additionally, the mask branch only adds a small computational overhead, enabling a 

fast system and rapid experimentation. 

Mask R-CNN is basically an extension of Faster R-CNN. Faster R-CNN is widely 

used for object detection tasks. For a given image, it returns the class label and 

bounding box coordinates for each object in the image. The Mask R-CNN framework 

is built on top of Faster R-CNN. So, for a given image, Mask R-CNN, in addition to 

the class label and bounding box coordinates for each object, will also return the 

object mask. 

Backbone Model 

Similar to the ConvNet that we use in Faster R-CNN to extract feature maps from the 

image, we use the ResNet 101 architecture to extract features from the images in 

Mask R-CNN. So, the first step is to take an image and extract features using the 

ResNet 101 architecture. These features act as an input for the next layer. 

Region Propose Network(RPM) 

Now, we take the feature maps obtained in the previous step and apply a region 

proposal network (RPM). This basically predicts if an object is present in that region 

(or not). In this step, we get those regions or feature maps which the model predicts 

contain some object. 
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Region Of Interest (ROI) 

The regions obtained from the RPN might be of different shapes, right? Hence, we 

apply a pooling layer and convert all the regions to the same shape. Next, these 

regions are passed through a fully connected network so that the class label and 

bounding boxes are predicted. 

Till this point, the steps are almost similar to how Faster R-CNN works. Now comes 

the difference between the two frameworks. In addition to this, Mask R-CNN also 

generates the segmentation mask. 

For that, we first compute the region of interest so that the computation time can be 

reduced. For all the predicted regions, we compute the Intersection over Union (IoU) 

with the ground truth boxes. We can computer IoU like this: 

                             IoU = Area of the intersection / Area of the union 

Now, only if the IoU is greater than or equal to 0.5, we consider that as a region of 

interest. Otherwise, we neglect that particular region. We do this for all the regions 

and then select only a set of regions for which the IoU is greater than 0.5. 

Segmentation Mask 

Once we have the RoIs based on the IoU values, we can add a mask branch to the 

existing architecture. This returns the segmentation mask for each region that 

contains an object. It returns a mask of size 28 X 28 for each region which is then 

scaled up for inference. 

This is the final step in Mask R-CNN where we predict the masks for all the objects 

in the image. 
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Images: In our work we have taken 80 foreground images of various types of weeds 

along with 37 background images of various fields. 

 

                   

 

Figure 3.2.1: Foreground Images 

 

 

 

Figure 3.2.2 : Background Images 
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Image Preprocessing: Here, composed images are created i.e., foreground images are placed on 

given different backgrounds and mask images are created accordingly along with mask definition 

file (.json file). Mask definition file contains all the details about mask like categories, 

subcategories, name, id, etc. 

 
Preprocessing an image is a must so that programs work properly to give the expected output. The 

aim of pre-processing is to improve the quality of the image so that we can analyze it in a better 

way. By preprocessing we can suppress undesired distortions and enhance some features which 

are necessary for the application we are working for.  

 

                           

 

                    Figure 3.2.3 : Example of Training Data along with Mask 
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                      Trained Mask R-CNN model: 

Mask R-CNN is an extension of Faster R-CNN. Mask R-CNN has an additional branch 

for predicting segmentation masks on each Region of Interest (RoI) in a pixel-to pixel 

manner. 

Mask R-CNN model is divided into two parts. 
 

• Region proposal network (RPN) to proposes candidate object bounding 

boxes. 

• Binary mask classifier to generate mask for every class 
 
 
 
 

                                   
 

                    Figure 3.2.4 : Mask R-CNN 
 
 
 

 
❖  Image is run through the CNN to generate the feature maps. 

 
❖ Region Proposal Network (RPN) uses a CNN to generate the multiple Region of 

Interest (RoI) using a lightweight binary classifier. It does this using 9 anchors boxes 

over the image. The classifier returns object/no-object scores. Non-Max suppression 

is applied to Anchors with high objectness score 
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❖ The RoI Align network outputs multiple bounding boxes rather than a single definite 

one and warp them into a fixed dimension. 

 
❖ Warped features are then fed into fully connected layers to make classification using 

softmax and boundary box prediction is further refined using the regression model 

 
❖ Warped features are also fed into Mask classifier, which consists of two CNN’s to 

output a binary mask for each RoI. Mask Classifier allows the network to generate 

masks for every class without competition among classes. 

 

 

                                              

 

Figure 3.2.5 : Mask R-CNN on RPN 
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                     Step by Step Detection 

 

1. Anchor sorting and filtering 

 

Visualizes every step of the first stage Region Proposal Network and displays positive 

and negative anchors along with anchor box refinement. 

    
 

 
Figure 3.2.6 : Image with multiple anchor boxes 

 
 
 

2. Bounding Box Refinement 

 

This is an example of final detection boxes (dotted lines) and the refinement applied to 

them (solid lines) in the second stage. Non-Max Suppression will remove all bounding 

boxes where IoU is less than or equal to 0.5. It picks the bounding box with the highest 

value for IoU and suppress the other bounding boxes for identifying the same object. 
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Figure 3.2.7 : Bounding box refinement 

 
 

 

3. Mask Generation 

 

Masks are generated. These then get scaled and placed on the image in the right 

location. 

Figure 3.2.8 : Examples of generated masks 
 
 
 

4. Logging to TensorBoard 

TensorBoard is a great debugging and visualization tool. The model is configured to 

log losses and save weights at the end of every epoch. 
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Graph 3.2.9 : Graphs showing loss at every epoch 

 
 

5. Composing the different pieces into the final result 

 

This is the result we obtain after identifying the objects in the given image. We can have 

some false positives here and there. We can reduce them by increasing the training 

hours. 

 
 

 
Figure 3.2.10 : Image with identified object 
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Steps to implement Mask R-CNN: 

We will be using the mask R-CNN framework created by the Data scientists and 

researchers at Facebook AI Research (FAIR). 

Let’s have a look at the steps which we will follow to perform image segmentation 

using Mask R-CNN. 

  

Step 1: Clone the repository 

First, we will clone the mask rcnn repository which has the architecture for Mask R-

CNN. Use the following command to clone the repository: 

git clone https://github.com/matterport/Mask_RCNN.git 

Once this is done, we need to install the dependencies required by Mask R-CNN. 

 

Step 2: Install the dependencies 

Here is a list of all the dependencies for Mask R-CNN: 

• numpy 

• scipy 

• Pillow 

• cython 

• matplotlib 

• scikit-image 

• tensorflow>=1.3.0 

• keras>=2.0.8 

• opencv-python 

• h5py 

• imgaug 

• IPython 

You must install all these dependencies before using the Mask R-CNN framework. 
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Step 3: Download the pre-trained weights (trained on MS COCO) 

Next, we need to download the pretrained weights. These weights are obtained from a 

model that was trained on the MS COCO dataset. Once you have downloaded the 

weights, paste this file in the samples folder of the Mask RCNN repository that we 

cloned in step 1. 

 

Step 4: Predicting for our image 

Finally, we will use the Mask R-CNN architecture and the pretrained weights to 

generate predictions for our own images. 

We will implement all these things in Python and then generate the masks along with 

the classes and bounding boxes for objects in our images. 

 

Advantages of mask R-CNN: 

• Simplicity: Mask R-CNN is simple to train. 

• Performance: Mask R-CNN outperforms all existing, single-model entries on 

every task. 

• Efficiency: The method is very efficient and adds only a small overhead to 

Faster R-CNN. 

• Flexibility: Mask R-CNN is easy to generalize to other tasks. For example, it is 

possible to use Mask R-CNN for human pose estimation in the same 

framework. 

Video Input: The path of the video containing weeds is given as the input to 

the trained Mask R-CNN model. 

 
Video Output: Weeds are detected in the given video input using the algorithm and 

the output video of identified weeds is sent to the given path. 
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3.3 USE CASE DIAGRAM 

 
In the use case diagram, we have basically two actors who are the user and the 

system. The user uploads the video of crops and the system detects the weeds in 

the given video. 

 

Figure 3.3 : Use case diagram for Identification of weeds from crops 
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3.4 CLASS DIAGRAM 

 
Class Diagram is a collection of classes and objects. 

 

 

Figure 3.4 : Class Diagram for Identification of weeds from crops 
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3.5 SEQUENCE DIAGRAM 
 

It describes the object interactions arranged in a time sequence . 
 
 

 
Figure 3.5 : Sequence diagram for Identification of weeds from crops 
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3.6 ACTIVITY DIAGRAM 

 
It describes the flow of activity states. 

 

 
Figure 3.6 : Activity diagram for Identification of weeds from crops 
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          4.IMPLEMENTATION 
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4. IMPLEMENTATION 
 

      4.1 SAMPLE CODE 

 

 

A)MASK_RCNN.IPYNB 
%load_ext autoreload 
import os 
import sys 
import json 
import numpy as np 
import time 
from PIL import Image, ImageDraw A)MASK_RCNN.IPYNB 
%load_ext autoreload 
import os 
import sys 
import json 
import numpy as np 
import time 
from PIL import Image, ImageDraw 
from pathlib import Path 
 
# Set the ROOT_DIR variable to the root directory of the Mask_RCNN git repo 
 
ROOT_DIR = 'C:/Users/HPPP/anaconda3/cocosynth-master/Mask_RCNN-master/' 
assert os.path.exists(ROOT_DIR), 'ROOT_DIR does not exist. Did you forget to read 
the instructions above? ;)' 
 
# Directory to save logs and trained model 
 
MODEL_DIR = os.path.join(ROOT_DIR, "logs") 
 
# Local path to trained weights file 
 
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") 
 
# Download COCO trained weights from Releases if needed 
 
if not os.path.exists(COCO_MODEL_PATH): 
 utils.download_trained_weights(COCO_MODEL_PATH) 
 
#CONFIGURATION 
 
class CocoSynthConfig(Config): 
 """Configuration for training on the box_synthetic dataset. 
 Derives from the base Config class and overrides specific values. 
 """ 
 # Give the configuration a recognizable name 
 



IDENTIFICATION OF WEEDS FROM CROPS USING CONVOLUTIONAL NEURAL NETWORKS 

CMRTC 23 

 

 

 
 NAME = "cocosynth_dataset" 
  
# Train on 1 GPU and 1 image per GPU. Batch size is 52 (GPUs * images/GPU). 
 
 GPU_COUNT = 1 
 IMAGES_PER_GPU = 1 
 
 # Number of classes (including background) 
 
 NUM_CLASSES = 2 # background + 14 box types 
 
 # All of our training images are 512x512 
 
 IMAGE_MIN_DIM = 512 
 IMAGE_MAX_DIM = 512 
 
 # You can experiment with this number to see if it improves training 
 
 STEPS_PER_EPOCH = 1000 
  
# This is how often validation is run. If you are using too much hard drive space 
 # on saved models (in the MODEL_DIR), try making this value larger. 
 
 VALIDATION_STEPS = 5 
 
 # Matterport originally used resnet101, but I downsized to fit it on my graphics card 
 
 BACKBONE = 'resnet101' 
 
 # To be honest, I haven't taken the time to figure out what these do 
 
 RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) 
 TRAIN_ROIS_PER_IMAGE = 32 
 MAX_GT_INSTANCES = 50  
 POST_NMS_ROIS_INFERENCE = 500  
 POST_NMS_ROIS_TRAINING = 1000  
config = CocoSynthConfig() 
config.display() 
 
#DEFINE A DATASET 
class CocoLikeDataset(utils.Dataset): 
 """ Generates a COCO-like dataset, i.e. an image dataset annotated in the style of the 
COCO dataset. 
 See http://cocodataset.org/#home for more information. 
 """ 
 def load_data(self, annotation_json, images_dir): 
 """ Load the coco-like dataset from json 
 Args: 
 annotation_json: The path to the coco annotations json file 
 images_dir: The directory holding the images referred to by the json file 
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 # Load json from file 
 
 json_file = open(annotation_json) 
 coco_json = json.load(json_file) 
 json_file.close()  
  
# Add the class names using the base method from utils.Dataset 
 
 source_name = "coco_like" 
 for category in coco_json['categories']: 
 class_id = category['id'] 
 class_name = category['name'] 
 if class_id < 1: 
 print('Error: Class id for "{}" cannot be less than one. (0 is reserved for the  
 background)'.format(class_name)) 
 return  
 self.add_class(source_name, class_id, class_name) 
 
 # Get all annotations 
 
 annotations = {} 
 for annotation in coco_json['annotations']: 
 image_id = annotation['image_id'] 
 if image_id not in annotations: 
 annotations[image_id] = [] 
 annotations[image_id].append(annotation) 
 
 # Get all images and add them to the dataset 
 
 seen_images = {} 
 for image in coco_json['images']: 
 image_id = image['id'] 
 if image_id in seen_images: 
 print("Warning: Skipping duplicate image id: {}".format(image)) 
 else: 
 seen_images[image_id] = image 
 try: 
 image_file_name = image['file_name'] 
 image_width = image['width'] 
 image_height = image['height'] 
 except KeyError as key: 
 print("Warning: Skipping image (id: {}) with missing key: {}".format(image_id,   
key)) 
  image_path = os.path.abspath(os.path.join(images_dir, image_file_name)) 
 image_annotations = annotations[image_id]  
  
# Add the image using the base method from utils.Dataset 
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 self.add_image( 
 source=source_name, 
 image_id=image_id, 
 path=image_path, 
 width=image_width, 
 height=image_height, 
 annotations=image_annotations 
 ) 
  
 def load_mask(self, image_id): 
 """ Load instance masks for the given image. 
 MaskRCNN expects masks in the form of a bitmap [height, width, instances]. 
 Args: 
 image_id: The id of the image to load masks for 
 Returns: 
 masks: A bool array of shape [height, width, instance count] with 
 one mask per instance. 
 class_ids: a 1D array of class IDs of the instance masks. 
 """ 
 image_info = self.image_info[image_id] 
 annotations = image_info['annotations'] 
 instance_masks = [] 
 class_ids = [] 
 for annotation in annotations: 
 class_id = annotation['category_id'] 
 mask = Image.new('1', (image_info['width'], image_info['height'])) 
 mask_draw = ImageDraw.ImageDraw(mask, '1') 
 for segmentation in annotation['segmentation']: 
 mask_draw.polygon(segmentation, fill=1) 
 bool_array = np.array(mask) > 0 
 instance_masks.append(bool_array) 
 class_ids.append(class_id) 
 mask = np.dstack(instance_masks) 
 class_ids = np.array(class_ids, dtype=np.int32) 
  return mask, class_ids 
 
#CREATE THE TRAINING AND VALIDATION DATASETS 
 
dataset_train = CocoLikeDataset() 
dataset_train.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/ 
output/training/coco_instances.json', 
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/training/images') 
dataset_train.prepare() 
dataset_val = CocoLikeDataset() 
dataset_val.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/out
put/val/coco_instances.json', 
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/val/images') 
dataset_val.prepare() 
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#DISPLAY FEW IMAGES FROM TRAIN AND VAL DATASETS 
 
for name, dataset in [('training', dataset_train), ('validation', dataset_val)]: 
 print(f'Displaying examples from {name} dataset:') 
  image_ids = np.random.choice(dataset.image_ids, 3) 
 for image_id in image_ids: 
 image = dataset.load_image(image_id) 
 mask, class_ids = dataset.load_mask(image_id) 
 visualize.display_top_masks(image, mask, class_ids, dataset.class_names) 
 
#CREATE THE TRAINING MODEL AND TRAIN 
# Create model in training mode 
 
model = modellib.MaskRCNN(mode="training", config=config, 
 model_dir=MODEL_DIR) 
 
# Which weights to start with? 
init_with = "coco" # imagenet, coco, or last 
if init_with == "imagenet": 
 model.load_weights(model.get_imagenet_weights(), by_name=True) 
elif init_with == "coco": 
 
 # Load weights trained on MS COCO, but skip layers that 
 # are different due to the different number of classes 
 # See README for instructions to download the COCO weights 
 
 model.load_weights(COCO_MODEL_PATH, by_name=True, 
 exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",  
 "mrcnn_bbox", "mrcnn_mask"]) 
elif init_with == "last": 
 
 # Load the last model you trained and continue training 
 
 model.load_weights(model.find_last(), by_name=True) 
 
#TRAINING 
# Train the head branches 
# Passing layers="heads" freezes all layers except the head 
# layers. You can also pass a regular expression to select 
# which layers to train by name pattern. 
 
start_train = time.time() 
model.train(dataset_train, dataset_val,  
 learning_rate=config.LEARNING_RATE,  
 epochs=4,  
 layers='heads') 
end_train = time.time() 
minutes = round((end_train -start_train) / 60, 2) 
print(f'Training took {minutes} minutes') 
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# Fine tune all layers 
# Passing layers="all" trains all layers. You can also  
# pass a regular expression to select which layers to 
# train by name pattern. 
 
start_train = time.time() 
model.train(dataset_train, dataset_val,  
 learning_rate=config.LEARNING_RATE / 10, 
 epochs=8,  
 layers="all") 
end_train = time.time() 
minutes = round((end_train -start_train) / 60, 2) 
print(f'Training took {minutes} minutes') 
 
#VIDEO INFERENCE 
 
video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4") 
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save") 
video_save_dir.mkdir(exist_ok=True) 
 
#ADJUST CONFIG PARAMETERS 
 
class VideoInferenceConfig(CocoSynthConfig): 
 GPU_COUNT = 1 
 IMAGES_PER_GPU = 1 
 IMAGE_MIN_DIM = 1088 
 IMAGE_MAX_DIM = 1920 
 IMAGE_SHAPE = [1920, 1080, 3] 
 DETECTION_MIN_CONFIDENCE = 0.80 
inference_config = VideoInferenceConfig() 
 
#SETUP MODEL AND LOAD TRAINED WEIGHTS 
# Recreate the model in inference mode 
 
model = modellib.MaskRCNN(mode="inference",  
 config=inference_config, 
 model_dir=MODEL_DIR) 
 
# Get path to saved weights 
# Either set a specific path or find last trained weights 
# model_path = str(Path(ROOT_DIR) / "logs" /  
 
"box_synthetic20190328T2255/mask_rcnn_box_synthetic_0016.h5" ) 
model_path = model.find_last() 
 
# Load trained weights (fill in path to trained weights here) 
 
assert model_path != "", "Provide path to trained weights" 
print("Loading weights from ", model_path) 
model.load_weights(model_path, by_name=True) 
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import cv2 
import skimage 
import random 
import colorsys 
from tqdm import tqdm 
def random_colors(N, bright=True): 
 """ Generate random colors.  
 To get visually distinct colors, generate them in HSV space then 
 convert to RGB. 
 Args: 
 N: the number of colors to generate 
 bright: whether or not to use bright colors 
 Returns: 
 a list of RGB colors, e.g [(0.0, 1.0, 0.0), (1.0, 0.0, 0.5), ...] 
 """ 
 brightness = 1.0 if bright else 0.7 
 hsv = [(i / N, 1, brightness) for i in range(N)] 
 colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) 
 random.shuffle(colors) 
 return colors 
def apply_mask(image, mask, color, alpha=0.5): 
 """ Apply the given mask to the image. 
 Args: 
 image: a cv2 image 
 mask: a mask of which pixels to color 
 color: the color to use 
 alpha: how visible the mask should be (0 to 1) 
 Returns: 
 a cv2 image with mask applied 
 """ 
 for c in range(3): 
 image[:, :, c] = np.where(mask == 1, 
 image[:, :, c] * 
 (1 - alpha) + alpha * color[c] * 255, 
 image[:, :, c]) 
 return image 
def display_instances(image, boxes, masks, ids, names, scores, colors): 
 """ Take the image and results and apply the mask, box, and label 
 Args: 
 image: a cv2 image 
 boxes: a list of bounding boxes to display 
 masks: a list of masks to display 
 ids: a list of class ids 
 names: a list of class names corresponding to the ids 
 scores: a list of scores of each instance detected 
 colors: a list of colors to use 
 Returns: 
 a cv2 image with instances displayed  
 """ 
 n_instances = boxes.shape[0] 
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 if not n_instances: 
 return image # no instances 
 else: 
 assert boxes.shape[0] == masks.shape[-1] == ids.shape[0] 
 for i, color in enumerate(colors): 
  
# Check if any boxes to show 
 
 if not np.any(boxes[i ]) 
 continue 
 
 # Check if any scores to show 
 
 if scores is not None: 
 score = scores[i]  
 else: 
 score = None 
 
 # Add the mask 
 
 image = apply_mask(image, masks[:, :, i], color)  
 
 # Add the bounding box 
 
 y1, x1, y2, x2 = boxes[i] 
 image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) 
 
 # Add the label 
 
 label = names[ids[i]] 
 if score: 
 label = f'{label} {score:.2f}'  
 label_pos = (x1 + (x2 - x1) // 2, y1 + (y2 - y1) // 2) # center of bounding box 
 image = cv2.putText(image, label, label_pos, cv2.FONT_HERSHEY_DUPLEX, 0.7, 
color, 2) 
 return image 
 
#PREPARE FOR INFERENCE 
 
video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4") 
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save") 
video_save_dir.mkdir(exist_ok=True) 
vid_name = video_save_dir / "output.mp4" 
v_format="FMP4" 
fourcc = cv2.VideoWriter_fourcc(*v_format) 
print('Writing output video to: ' + str(vid_name)) 
 
#colors = random_colors(30) 
 
colors = [(1.0, 1.0, 0.0)] * 30 
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# Change color representation from RGB to BGR before displaying instances 
 
colors = [(color[2], color[1], color[0]) for color in colors] 
 
#PREPARE INFERENCE ON VIDEO 
 
input_video = cv2.VideoCapture(str(video_file)) 
frame_count = int(input_video.get(cv2.CAP_PROP_FRAME_COUNT)) 
fps = int(input_video.get(cv2.CAP_PROP_FPS)) 
output_video = None 
vid_size = None 
current_frame = 0 
for i in tqdm(range(frame_count)): 
 
 # Read the current frame 
 
 ret, frame = input_video.read() 
 if not ret: 
 break  
 current_frame += 1  
 
 # Change color representation from BGR to RGB before running model.detect() 
 
 detect_frame = frame[:, :, ::-1]  
 
 # Run inference on the color-adjusted frame 
 
 results = model.detect([detect_frame], verbose=0) 
 r = results[0] 
 n_instances = r['rois'].shape[0]  
  
# Make sure we have enough colors 
 
 if len(colors) < n_instances: 
 
 # not enough colors, generate more 
 
 more_colors = random_colors(n_instances - len(colors))  
 
 # Change color representation from RGB to BGR before displaying instances 
 
 more_colors = [(color[2], color[1], color[0]) for color in more_colors] 
 colors += more_colors  
 
 # Display instances on the original frame 
 
 display_frame = display_instances(frame, r['rois'], r['masks'], r['class_ids'],  
 dataset_train.class_names, r['scores'], colors[0:n_instances]) 
 
 # Make sure we got displayed instances 
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 if display_frame is not None: 
 frame = display_frame 
 
 # Create the output_video if it doesn't yet exist 
 
 if output_video is None: 
 if vid_size is None: 
 vid_size = frame.shape[1], frame.shape[0] 
 output_video = cv2.VideoWriter(str(vid_name), fourcc, float(fps), vid_size, True) 
 
 # Resize frame if necessary 
 
 if vid_size[0] != frame.shape[1] and vid_size[1] != frame.shape[0]: 
 frame = cv2.resize(frame, vid_size) 
 
 # Write the frame to the output_video 
 
 output_video.write(frame) 
input_video.release() 
output_video.release()   
from pathlib import Path 
 
# Set the ROOT_DIR variable to the root directory of the Mask_RCNN git repo 
 
ROOT_DIR = 'C:/Users/HPPP/anaconda3/cocosynth-master/Mask_RCNN-master/' 
assert os.path.exists(ROOT_DIR), 'ROOT_DIR does not exist. Did you forget to read 
the  
instructions above? ;)' 
 
# Directory to save logs and trained model 
 
MODEL_DIR = os.path.join(ROOT_DIR, "logs") 
 
# Local path to trained weights file 
 
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") 
 
# Download COCO trained weights from Releases if needed 
 
if not os.path.exists(COCO_MODEL_PATH): 
 utils.download_trained_weights(COCO_MODEL_PATH) 
 
#CONFIGURATION 
 
class CocoSynthConfig(Config): 
 """Configuration for training on the box_synthetic dataset. 
 Derives from the base Config class and overrides specific values. 
 """ 
 
# Give the configuration a recognizable name 
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 NAME = "cocosynth_dataset" 
 
 # Train on 1 GPU and 1 image per GPU. Batch size is 52 (GPUs * images/GPU). 
 
 GPU_COUNT = 1 
 IMAGES_PER_GPU = 1 
 
 # Number of classes (including background) 
 
 NUM_CLASSES = 2 # background + 14 box types 
 
 # All of our training images are 512x512 
 
 IMAGE_MIN_DIM = 512 
 IMAGE_MAX_DIM = 512 
 
 # You can experiment with this number to see if it improves training 
 
 STEPS_PER_EPOCH = 1000 
 
 # This is how often validation is run. If you are using too much hard drive space 
 # on saved models (in the MODEL_DIR), try making this value larger. 
 
 VALIDATION_STEPS = 5 
 
 # Matterport originally used resnet101, but I downsized to fit it on my graphics card 
 BACKBONE = 'resnet101' 
 # To be honest, I haven't taken the time to figure out what these do 
 
 RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) 
 TRAIN_ROIS_PER_IMAGE = 32 
 MAX_GT_INSTANCES = 50  
 POST_NMS_ROIS_INFERENCE = 500  
 POST_NMS_ROIS_TRAINING = 1000  
config = CocoSynthConfig() 
config.display() 
 
#DEFINE A DATASET 
 
class CocoLikeDataset(utils.Dataset): 
 """ Generates a COCO-like dataset, i.e. an image dataset annotated in the style of the 
COCO dataset. 
 See http://cocodataset.org/#home for more information. 
 """ 
 def load_data(self, annotation_json, images_dir): 
 """ Load the coco-like dataset from json 
 Args: 
 annotation_json: The path to the coco annotations json file 
 images_dir: The directory holding the images referred to by the json file 
 """ 
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 # Load json from file 
 
 json_file = open(annotation_json) 
 coco_json = json.load(json_file) 
 json_file.close()  
 
 # Add the class names using the base method from utils.Dataset 
 
 source_name = "coco_like" 
 for category in coco_json['categories']: 
 class_id = category['id'] 
 class_name = category['name'] 
 if class_id < 1: 
 print('Error: Class id for "{}" cannot be less than one. (0 is reserved for the  
background)'.format(class_name)) 
 return  
 self.add_class(source_name, class_id, class_name) 
 
 # Get all annotations 
 
 annotations = {} 
 for annotation in coco_json['annotations']: 
 image_id = annotation['image_id'] 
 if image_id not in annotations: 
 annotations[image_id] = [] 
 annotations[image_id].append(annotation) 
 
 # Get all images and add them to the dataset 
 
 seen_images = {} 
 for image in coco_json['images']: 
 image_id = image['id'] 
 if image_id in seen_images: 
 print("Warning: Skipping duplicate image id: {}".format(image)) 
 else: 
 seen_images[image_id] = image 
 try: 
 image_file_name = image['file_name'] 
 image_width = image['width'] 
 image_height = image['height'] 
 except KeyError as key: 
 print("Warning: Skipping image (id: {}) with missing key: {}".format(image_id,         
key)) 
  image_path = os.path.abspath(os.path.join(images_dir, image_file_name)) 
 image_annotations = annotations[image_id]  
  
# Add the image using the base method from utils.Dataset 
 
 self.add_image( 
 source=source_name, 
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 image_id=image_id, 
 path=image_path, 
 width=image_width, 
 height=image_height, 
 annotations=image_annotations 
 ) 
  
 def load_mask(self, image_id): 
 """ Load instance masks for the given image. 
 MaskRCNN expects masks in the form of a bitmap [height, width, instances]. 
 Args: 
 image_id: The id of the image to load masks for 
 Returns: 
 masks: A bool array of shape [height, width, instance count] with 
 one mask per instance. 
 class_ids: a 1D array of class IDs of the instance masks. 
 """ 
 image_info = self.image_info[image_id] 
 annotations = image_info['annotations'] 
 instance_masks = [] 
 class_ids = [] 
 for annotation in annotations: 
 class_id = annotation['category_id'] 
 mask = Image.new('1', (image_info['width'], image_info['height'])) 
 mask_draw = ImageDraw.ImageDraw(mask, '1') 
 for segmentation in annotation['segmentation']: 
 mask_draw.polygon(segmentation, fill=1) 
 bool_array = np.array(mask) > 0 
 instance_masks.append(bool_array) 
 class_ids.append(class_id) 
 mask = np.dstack(instance_masks) 
 class_ids = np.array(class_ids, dtype=np.int32) 
  return mask, class_ids 
 
#CREATE THE TRAINING AND VALIDATION DATASETS 
 
dataset_train = CocoLikeDataset() 
dataset_train.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/ 
output/training/coco_instances.json', 
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/training/images') 
dataset_train.prepare() 
dataset_val = CocoLikeDataset() 
dataset_val.load_data('C:/Users/HPPP/anaconda3/cocosynthmaster/datasets/weeds/out
put/val/coco_instances.json', 
 'C:/Users/HPPP/anaconda3/cocosynth-master/datasets/weeds/output/val/images') 
dataset_val.prepare() 
 
#DISPLAY FEW IMAGES FROM TRAIN AND VAL DATASETS 
 
for name, dataset in [('training', dataset_train), ('validation', dataset_val)]: 
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 print(f'Displaying examples from {name} dataset:') 
  image_ids = np.random.choice(dataset.image_ids, 3) 
 for image_id in image_ids: 
 image = dataset.load_image(image_id) 
 mask, class_ids = dataset.load_mask(image_id) 
 visualize.display_top_masks(image, mask, class_ids, dataset.class_names) 
 
#CREATE THE TRAINING MODEL AND TRAIN 
# Create model in training mode 
 
model = modellib.MaskRCNN(mode="training", config=config, 
 model_dir=MODEL_DIR) 
 
# Which weights to start with? 
 
init_with = "coco" # imagenet, coco, or last 
if init_with == "imagenet": 
 model.load_weights(model.get_imagenet_weights(), by_name=True) 
elif init_with == "coco": 
 
 # Load weights trained on MS COCO, but skip layers that 
 # are different due to the different number of classes 
 # See README for instructions to download the COCO weights 
 
 model.load_weights(COCO_MODEL_PATH, by_name=True, 
 exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",  
 "mrcnn_bbox", "mrcnn_mask"]) 
elif init_with == "last": 
 
 # Load the last model you trained and continue training 
 
 model.load_weights(model.find_last(), by_name=True) 
 
#TRAINING 
# Train the head branches 
# Passing layers="heads" freezes all layers except the head 
# layers. You can also pass a regular expression to select 
# which layers to train by name pattern. 
 
start_train = time.time() 
model.train(dataset_train, dataset_val,  
 learning_rate=config.LEARNING_RATE,  
 epochs=4,  
 layers='heads') 
end_train = time.time() 
minutes = round((end_train -start_train) / 60, 2) 
print(f'Training took {minutes} minutes') 
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# Fine tune all layers 
# Passing layers="all" trains all layers. You can also  
# pass a regular expression to select which layers to 
# train by name pattern. 
 
start_train = time.time() 
model.train(dataset_train, dataset_val,  
 learning_rate=config.LEARNING_RATE / 10, 
 epochs=8,  
 layers="all") 
end_train = time.time() 
minutes = round((end_train -start_train) / 60, 2) 
print(f'Training took {minutes} minutes') 
 
#VIDEO INFERENCE 
 
video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4") 
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save") 
video_save_dir.mkdir(exist_ok=True) 
 
#ADJUST CONFIG PARAMETERS 
 
class VideoInferenceConfig(CocoSynthConfig): 
 GPU_COUNT = 1 
 IMAGES_PER_GPU = 1 
 IMAGE_MIN_DIM = 1088 
 IMAGE_MAX_DIM = 1920 
 IMAGE_SHAPE = [1920, 1080, 3] 
 DETECTION_MIN_CONFIDENCE = 0.80 
inference_config = VideoInferenceConfig() 
 
#SETUP MODEL AND LOAD TRAINED WEIGHTS 
# Recreate the model in inference mode 
 
model = modellib.MaskRCNN(mode="inference",  
 config=inference_config, 
 model_dir=MODEL_DIR) 
 
# Get path to saved weights 
# Either set a specific path or find last trained weights 
# model_path = str(Path(ROOT_DIR) / "logs" /  
 
"box_synthetic20190328T2255/mask_rcnn_box_synthetic_0016.h5" ) 
model_path = model.find_last() 
 
# Load trained weights (fill in path to trained weights here) 
 
assert model_path != "", "Provide path to trained weights" 
print("Loading weights from ", model_path) 
model.load_weights(model_path, by_name=True) 
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import cv2 
import skimage 
import random 
import colorsys 
from tqdm import tqdm 
def random_colors(N, bright=True): 
 """ Generate random colors.  
 To get visually distinct colors, generate them in HSV space then 
 convert to RGB. 
 Args: 
 N: the number of colors to generate 
 bright: whether or not to use bright colors 
 Returns: 
 a list of RGB colors, e.g [(0.0, 1.0, 0.0), (1.0, 0.0, 0.5), ...] 
 """ 
 brightness = 1.0 if bright else 0.7 
 hsv = [(i / N, 1, brightness) for i in range(N)] 
 colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) 
 random.shuffle(colors) 
 return colors 
def apply_mask(image, mask, color, alpha=0.5): 
 """ Apply the given mask to the image. 
 Args: 
 image: a cv2 image 
 mask: a mask of which pixels to color 
 color: the color to use 
 alpha: how visible the mask should be (0 to 1) 
 Returns: 
 a cv2 image with mask applied 
 """ 
 for c in range(3): 
 image[:, :, c] = np.where(mask == 1, 
 image[:, :, c] * 
 (1 - alpha) + alpha * color[c] * 255, 
 image[:, :, c]) 
 return image 
def display_instances(image, boxes, masks, ids, names, scores, colors): 
 """ Take the image and results and apply the mask, box, and label 
 Args: 
 image: a cv2 image 
 boxes: a list of bounding boxes to display 
 masks: a list of masks to display 
 ids: a list of class ids 
 names: a list of class names corresponding to the ids 
 scores: a list of scores of each instance detected 
 colors: a list of colors to use 
 Returns: 
 a cv2 image with instances displayed  
 """ 
 n_instances = boxes.shape[0] 
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 if not n_instances: 
 return image # no instances 
 else: 
 assert boxes.shape[0] == masks.shape[-1] == ids.shape[0] 
 for i, color in enumerate(colors): 
 
 # Check if any boxes to show 
 
 if not np.any(boxes[i ]) 
 continue 
 
 # Check if any scores to show 
 
 if scores is not None: 
 score = scores[i]  
 else: 
 score = None 
 
 # Add the mask 
 
 image = apply_mask(image, masks[:, :, i], color)  
 
 # Add the bounding box 
 
 y1, x1, y2, x2 = boxes[i] 
 image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) 
 
 # Add the label 
 
 label = names[ids[i]] 
 if score: 
 label = f'{label} {score:.2f}'  
 label_pos = (x1 + (x2 - x1) // 2, y1 + (y2 - y1) // 2) # center of bounding box 
 image = cv2.putText(image, label, label_pos, cv2.FONT_HERSHEY_DUPLEX, 0.7, 
color, 2) 
 return image 
 
#PREPARE FOR INFERENCE 
 
video_file = Path("../datasets/box_dataset_synthetic/videotest/boxvideo_24fps.mp4") 
video_save_dir = Path("../datasets/box_dataset_synthetic/videotest/save") 
video_save_dir.mkdir(exist_ok=True) 
vid_name = video_save_dir / "output.mp4" 
v_format="FMP4" 
fourcc = cv2.VideoWriter_fourcc(*v_format) 
print('Writing output video to: ' + str(vid_name)) 
 
#colors = random_colors(30) 
 
colors = [(1.0, 1.0, 0.0)] * 30 
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# Change color representation from RGB to BGR before displaying instances 
 
colors = [(color[2], color[1], color[0]) for color in colors] 
 
#PREPARE INFERENCE ON VIDEO 
 
input_video = cv2.VideoCapture(str(video_file)) 
frame_count = int(input_video.get(cv2.CAP_PROP_FRAME_COUNT)) 
fps = int(input_video.get(cv2.CAP_PROP_FPS)) 
output_video = None 
vid_size = None 
current_frame = 0 
for i in tqdm(range(frame_count)): 
 
 # Read the current frame 
 
 ret, frame = input_video.read() 
 if not ret: 
 break  
 current_frame += 1  
 
 # Change color representation from BGR to RGB before running model.detect() 
 
 detect_frame = frame[:, :, ::-1]  
 
 # Run inference on the color-adjusted frame 
 
 results = model.detect([detect_frame], verbose=0) 
 r = results[0] 
 n_instances = r['rois'].shape[0]  
 
 # Make sure we have enough colors 
 
 if len(colors) < n_instances: 
 
 # not enough colors, generate more 
 
 more_colors = random_colors(n_instances - len(colors))  
 
 # Change color representation from RGB to BGR before displaying instances 
 
 more_colors = [(color[2], color[1], color[0]) for color in more_colors] 
 colors += more_colors  
 
 # Display instances on the original frame 
 display_frame = display_instances(frame, r['rois'], r['masks'], r['class_ids'],  
 dataset_train.class_names, r['scores'], colors[0:n_instances]) 
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 # Make sure we got displayed instances 
 
 if display_frame is not None: 
 frame = display_frame 
 
 # Create the output_video if it doesn't yet exist 
 
 if output_video is None: 
 if vid_size is None: 
 vid_size = frame.shape[1], frame.shape[0] 
 output_video = cv2.VideoWriter(str(vid_name), fourcc, float(fps), vid_size, True) 
 
 # Resize frame if necessary 
 
 if vid_size[0] != frame.shape[1] and vid_size[1] != frame.shape[0]: 
 frame = cv2.resize(frame, vid_size) 
 
 # Write the frame to the output_video 
 
 output_video.write(frame) 
input_video.release() 
output_video.release() 
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5.1 SCREENSHOTS 
 

Screenshot 5.1.1 : Displaying few images from training and validation dataset 
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Screenshot 5.1.2 : Image inference on real image 
 
 

                       
 
 
 

                      
 
 
 
 

 
 
 
 

Here we are loading an image to see how our model performs. We can load any of our 

images to test the model.  

We will use the Mask R-CNN model along with the pretrained weights and see how well 

it segments the objects in the image. We will first take the predictions from the model 

and then plot the results to visualize them. 

We can see that the model has done pretty well to segment the weeds in the image. We 

can look at each mask or the segmented objects separately as well. 
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Screenshot 5.1.3 : Image inference on real image 
 
 
 
 

                           
  
 
 
 
 
 

Here we are loading an image to see how our model performs. We can load any of our 

images to test the model.  

We will use the Mask R-CNN model along with the pretrained weights and see how well 

it segments the objects in the image. We will first take the predictions from the model 

and then plot the results to visualize them. 

We can see that the model has done pretty well to segment the weeds in the image. We 

can look at each mask or the segmented objects separately as well. 
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Screenshot 5.1.4 : Screenshot of video output 
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Screenshot 5.1.5 : Screenshot of video output 
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Screenshot 5.1.6 : Screenshot of video output 
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Screenshot 5.1.7 : Screenshot of video output 

 
 
 
 
 

This is the result we got using our Mask-RCNN model. We can see that it predicted the 
weeds pretty well. 
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Screenshot 5.1.8 : Screenshot of video output 
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5.2 RESULT ANALYSIS: 

The proposed work has been performed on a dataset of around 1000 training images 

and up to 300 validation images. The purpose of the work is to detect the weeds 

using mask R-CNN. 

 

Mask R-CNN (Regional Convolutional Neural Network) has been the state-of-the- 

art model for object instance segmentation since it was proposed. Mask R-CNN 

utilizes a relatively simple method to achieve its success in tasks of object detection, 

instance segmentation, and key point detection. We had tested with several 

backbones and different instance segmentation methods. 

 

The key element of Mask R-CNN is the pixel-to-pixel alignment, which is the main 

missing piece of Fast/Faster R-CNN. Mask R-CNN adopts the same two-stage 

procedure with an identical first stage (which is RPN). In the second stage, in 

parallel to predicting the class and box offset, Mask R-CNN also outputs a binary 

mask for each RoI. This is in contrast to most recent systems, where classification 

depends on mask predictions. 

 

Furthermore, Mask R-CNN is simple to implement and train given the Faster R-

CNN framework, which facilitates a wide range of flexible architecture designs. 

Additionally, the mask branch only adds a small computational overhead, enabling 

a fast system and rapid experimentation. 
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Table 5.2.1 : Comparing different instance segmentation methods 

 

 

The results show that no matter what backbone network is used, Mask R-CNN can 

always outperform. We can also see that using ResNet-101 FPN can give much 

better results. 

                                    

                                                            

          

 

Graph 5.2.2 : Graph showing accuracy of Mask R-CNN 
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Accuracy comparison of Mask R-CNN, TLD, Faster-RCNN, RCNN algorithms for 

maintenance personnel. In the figure, the X-axis represents the number of images 

measured, and the y-axis represents the accuracy of the algorithm recognition. We can 

see that Mask R-CNN outperforms all the other algorithms with outmost accuracy. 
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6 TESTING 

 

6.1 INTRODUCTION TO TESTING 

The purpose of testing is to discover errors. Testing is the process of trying to discover 

every conceivable fault or weakness in a work product. It provides a way to check the 

functionality of components, subassemblies, assemblies and/or a finished product. It is the 

process of exercising software with the intent of ensuring that the Software system meets 

its requirements and user expectations and does not fail in an unacceptable manner. There 

are various types of tests. Each test type addresses a specific testing requirement. 

 
 

6.2 TYPES OF TESTING 

 
 

6.2.1 UNIT TESTING 

Unit testing involves the design of test cases that validate that the internal program logic 

is functioning properly, and that program inputs produce valid outputs. All decision 

branches and internal code flow should be validated. It is the testing of individual software 

units of the application .it is done after the completion of an individual unit before 

integration. This is a structural testing, that relies on knowledge of its construction and is 

invasive. Unit tests perform basic tests at component level and test a specific business 

process, application, and/or system configuration. Unit tests ensure that each unique path 

of a business process performs accurately to the documented specifications and contains 

clearly defined inputs and expected results. 

 
6.2.2 INTEGRATION TESTING 

Integration tests are designed to test integrated software components to determine if they 

run as one program. Testing is event driven and is more concerned with the basic outcome 

of screens or fields. Integration tests demonstrate that although the components were 

individually satisfaction, as shown by successfully unit testing, the combination of 

components is correct and consistent. Integration testing is specifically aimed at exposing 

the problems that arise from the combination of components. 
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6.2.3 FUNCTIONAL TESTING 

Functional tests provide systematic demonstrations that functions tested are available as 

specified by the business and technical requirements, system documentation, and user 

manuals. 

Functional testing is centered on the following items: 

Valid Input : Identified classes of valid input must be accepted. 

Invalid Input : Identified classes of invalid input must be rejected. 

Functions : Identified functions must be exercised. 

Output : Identified classes of application outputs must be exercised. 
 
 

Systems/Procedures: interfacing systems or procedures must be invoked. Organization and 

preparation of functional tests is focused on requirements, key functions, or special test 

cases. In addition, systematic coverage pertaining to identify Business process flows, data 

fields, predefined processes. 

 
 
 

6.3 TEST CASES 
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7.1 CONCLUSION 

As the weeds are mostly quick growers and compete with the crops for light, water, 

nutrients, and space, it is very important remove weeds from the crops. But manually 

removing them is tedious and takes a lot of time. Spraying herbicides can cause 

pollution. Hence, a deep learning model is developed using convolution neural network 

to detect weeds with a good accuracy so that the model could be used to detect the 

weeds in the field in a shorter time. Our proposed work uses Mask R-CNN built on 

ResNet 101 and FPN thereby reducing the complexity in training as compared to other 

backbones and instance segmentation methods. Further work can be enhanced using 

larger datasets for improved results. 

 
 
 

7.2 FUTURE SCOPE 

We can improve both the training and also the detection time of weeds. We can further 

enhance it by attaching it to robots or tractors to pluck the weeds from the crops thereby, 

saving the time and reducing the efforts of the farmer. We can also develop the model 

further in such a way that it can tell the percentage of weeds and also the future risks. 
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